Efectos de la variación ambiental sobre la reproducción de dos especies de ciervos ampliamente distribuidas

Autores/as

  • Marta Peláez Universidad Politécnica de Madrid

DOI:

https://doi.org/10.31167/csecfv5i47.19915

Resumen

El objetivo principal de esta tesis doctoral ha sido evaluar el efecto de la variación ambiental sobre la reproducción de diferentes poblaciones de ciervo (Cervus elaphus) y corzo (Capreolus capreolus) situadas en el límite de su área de distribución, como son la región Mediterránea y la región Alpina. Estas poblaciones marginales pueden aportar una información muy valiosa en el contexto actual de cambio climático ya que pueden ayudar a predecir futuros cambios demográficos y de distribución de las especies.

Como resultado principal, se ha observado que el incremento en la duración e intensidad de las sequías en ambientes mediterráneos y el adelantamiento del comienzo de la primavera en ambientes alpinos como consecuencia del cambio climático pueden provocar un desacople entre las principales etapas del ciclo reproductivo de ambas especies (como los partos o la formación de las cuernas) y el máximo de producción primaria. Todo esto podría afectar negativamente al éxito reproductivo de los ciervos y corzos que viven en estos ambientes.

Citas

Boyce, M. S. 1979. Seasonality and patterns of natural selection for life histories. The American Naturalist, 114(4), 569-583. https://doi.org/10.1086/283503

Brook, B. W., Akçakaya, H. R., Keith, D. A., Mace, G. M., Pearson, R. G., & Araújo, M. B. 2009. Integrating bioclimate with population models to improve forecasts of species extinctions under climate change. Biology Letters, 5, 723-725. https://doi.org/10.1098/rsbl.2009.0480

Bugalho, M. N., & Milne, J. A. 2003. The composition of the diet of red deer (Cervus elaphus) in a Mediterranean environment: a case of summer nutritional constraint? Forest Ecology and Management, 181(1-2), 23-29. https://doi.org/10.1016/S0378-1127(03)00125-7

Büntgen, U., Greuter, L., Bollmann, K., Jenny, H., Liebhold, A., Galván, J. D., ... & Mysterud, A. 2017. Elevational range shifts in four mountain ungulate species from the Swiss Alps. Ecosphere, 8(4), e01761. https://doi.org/10.1002/ecs2.1761

Chevin, L. M., & Hoffmann, A. A. 2017. Evolution of phenotypic plasticity in extreme environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1723), 20160138. https://doi.org/10.1098/rstb.2016.0138

Clutton-Brock, T. H., Guinness, F. E., & Albon, S. D. 1982. Red deer: behavior and ecology of two sexes. University of Chicago press.

Gaillard, J. M., Delorme, D., Boutin, J.M., Van Laere, G., Boisaubert, B., & Pradel, R. 1993. Roe deer survival patterns: a comparative analysis of contrasting populations. Journal of Animal Ecology, 62, 778-791. https://doi.org/10.2307/5396

Hoerling, M., Eischeid, J., Perlwitz, J., Quan, X., Zhang, T., & Pegion, P. 2012. On the increased frequency of Mediterranean drought. Journal of Climate, 25(6), 2146-2161. https://doi.org/10.1175/JCLI-D-11-00296.1

Intergovernmental Panel on Climate Change (IPCC). 2007. Climate Change 2007: The Physical Science Basis. Summary for Policymakers. Cambridge Uni¬versity Press. https://doi.org/10.1017/CBO9780511546013

Intergovernmental Panel on Climate Change (IPCC). 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Retrieved from http://www.ipcc.ch/report/ar5/syr/

Kawecki, T. J. 2008. Adaptation to marginal habitats. Annual Review of Ecology, Evolution, and Systematics, 39, 321-342. https://doi.org/10.1146/annurev.ecolsys.38.091206.095622

Kjellander, P., Hewison, A. J. M., Liberg, O., Angibault, J. M., Bideau, E., & Cargnelutti, B. 2004. Experimental evidence for density-dependence of home-range size in roe deer (Capreolus capreolus L.): a comparison of two long-term studies. Oecologia, 139(3), 478-485. https://doi.org/10.1007/s00442-004-1529-z

Klein, G., Vitasse, Y., Rixen, C., Marty, C., & Rebetez, M. 2016. Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow onset. Climatic Change, 139(3-4), 637-649. https://doi.org/10.1007/s10584-016-1806-y

Menzel, A. 2000. Trends in phenological phases in Europe between 1951 and 1996. International Journal of Biometeorology, 44(2), 76-81. https://doi.org/10.1007/s004840000054

Parmesan, C., & Yohe, G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37-42. https://doi.org/10.1038/nature01286

Peláez, M., San Miguel, A., Rodríguez?Vigal, C., & Perea, R. 2017. Climate, female traits and population features as drivers of breeding timing in Mediterranean red deer populations. Integrative Zoology, 12(5), 396-408. https://doi.org/10.1111/1749-4877.12252

Peláez, M., Perea, R., Díaz, M., San Miguel, A., Rodríguez?Vigal, C., & Côté, S. D. 2018. Use of cast antlers to assess antler size variation in red deer populations: effects of mast seeding, climate and population features in Mediterranean environments. Journal of Zoology, 306(1), 8-15. https://doi.org/10.1111/jzo.12563

Peláez, M., Gaillard, J. M., Bollmann, K., Heurich, M., & Rehnus, M. 2020. Large scale variation in birth timing and synchrony of a large herbivore along the latitudinal and altitudinal gradients. Journal of Animal Ecology, 89, 1906-1917. https://doi.org/10.1111/1365-2656.13251

Peláez, M., Sanuy, I., Peral, J. C., Esteban, J. L. Á., Lavín, S., Serrano, E., & Perea, R. 2021. Early life investment in antlers and body growth reflects adult performance in roe deer population under supplementary feeding conditions. Integrative Zoology. https://doi.org/10.1111/1749-4877.12535

Peñuelas, J., Filella, I., & Comas, P. 2002. Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Change Biology, 8(6), 531-544. https://doi.org/10.1046/j.1365-2486.2002.00489.x

Rehnus, M., Peláez, M. & Bollman, K. 2020. Advancing plant phenology causes an increasing trophic mismatch in an income breeder across a wide elevational range. Ecosphere, 11(6), e03144. https://doi.org/10.1002/ecs2.3144

San Miguel, A., Sanz, F., Perez-Carral, C., &Roig, S. 1996. Management of fodder resources for big game in the Toledo mountain range (Central Spain). Pastos, XXVI, 39-59.

Stearns, S. C. 1992. The Evolution of Life Histories. Oxford University Press

Suttie, J. M., & Webster, J. R. 1995. Extreme seasonal growth in arctic deer: comparisons and control mechanisms. American Zoologist, 35(3), 215-221. https://doi.org/10.1093/icb/35.3.215

Trivers, R. L. 1972. Parental investment and sexual selection. In: Campbell B. (ed.), Sexual Selection and the Descent of Man. Aldine Publishing Company, Chicago, pp. 136-179. https://doi.org/10.4324/9781315129266-7

Vanpé, C., Gaillard, J. M., Kjellander, P., Mysterud, A., Magnien, P., Delorme, D., ... & Mark Hewison, A. J. 2007. Antler size provides an honest signal of male phenotypic quality in roe deer. The American Naturalist, 169(4), 481-493. https://doi.org/10.1086/512046

Visser, M. E. 2008. Keeping up with a warming world assessing the rate of adaptation to climate change. Proceedings of the Royal Society B: Biological Sciences, 275(1635), 649-659. https://doi.org/10.12968/sece.2008.8.1265

Descargas

Publicado

2021-12-21

Cómo citar

Peláez, M. (2021). Efectos de la variación ambiental sobre la reproducción de dos especies de ciervos ampliamente distribuidas. Cuadernos De La Sociedad Española De Ciencias Forestales, 47(1), 15-26. https://doi.org/10.31167/csecfv5i47.19915

Número

Sección

Premios Universitarios de la SECF (Convocatoria 2020)