Desarrollo de un modelo experimental para el aislamiento y selección de hongos endófitos con actividad entomopatógena en el bosque mediterráneo para el control de plagas.

Autores/as

  • Alvaro Benito Delgado Universidad de Valladolid
  • Sergio Diez Hermano
  • Julio Javier Diez Casero

DOI:

https://doi.org/10.31167/csef.v0i51.20171

Resumen

Una metodología para la identificación y evaluación de hongos endófitos entomopatógenos en ecosistemas forestales es presentada en este estudio, enfocándose en su potencial como agentes de control biológico de plagas forestales. Para ello, se emplea el insecto modelo Tenebrio molitor para evaluar la patogenicidad de los hongos encontrados. Los hongos endófitos fueron aislados de los tejidos de diversas especies de árboles mediterráneos, Quercus ilex, Quercus pyrenaica, Quercus suber y Castanea sativa, y posteriormente testados en T. molitor. Se comparan los hongos entomopatógenos nativos encontrados con Beauveria pseudobassiana. Al comparar con Beauveria pseudobassiana, se observa que los hongos endófitos nativos encontrados causan una mortalidad del 100% en T. molitor, con un tiempo letal medio (TL50) de 15 días, mientras que Beauveria pseudobassiana presenta un TL50 de 8 días con la misma tasa de mortalidad. Estos hallazgos sugieren que los hongos endófitos nativos podría ser una alternativa para controlar plagas potenciales dentro del marco de la Gestión Integrada de Plagas (GIP).

Citas

Alali S., Mereghetti V., Faoro F., Bocchi S., Azmeh F.A. and Montagna M. 2019. Thermotolerant isolates of Beauveria bassiana as potential control agent of insect pest in subtropical climates. PLoS ONE 14(2). https://doi.org/10.1371/journal.pone.0211457

Bamisile B.S., Siddiqui J.A., Akutse K.S., Aguila L.C.R. and Xu, Y. 2021. General limitations to endophytic entomopathogenic fungi use as plant growth promoters, pests and pathogens biocontrol agents. Plants 10(10) https://doi.org/10.3390/plants10102119

Cheraghi A., Habibpour B., Mossadegh M. and Sharififard M. 2012. Horizontal transmission of the entomopathogen fungus metarhizium anisopliae in microcerotermes diversus groups. Insects 3(3): 709-718. https://doi.org/10.3390/insects3030709

Cory J.S. and Ericsson J.D. 2010. Fungal entomopathogens in a tritrophic context. BioControl. 55(1), 75-88. https://doi.org/10.1007/s10526-009-9247-4

Deruytter D., Coudron C.L. and Claeys, J. 2021. The influence of wet feed distribution on the density, growth rate and growth variability of Tenebrio molitor. Journal of Insects as Food and Feed 7(2), 141-149. https://doi.org/10.3920/JIFF2020.0049

Eski A. and Murat Gezgin M. 2022. Susceptibility of different life stages of Tenebrio molitor (Coleoptera: Tenebrionidae) to indigenous entomopathogenic fungi. Journal of Stored Products Research 98. https://doi.org/10.1016/j.jspr.2022.102008

Ganley R.J. and Newcombe G. 2006. Fungal endophytes in seeds and needles of Pinus monticola. Mycological Research. 110(3), 318-327. https://doi.org/10.1016/j.mycres.2005.10.005

Gardes M. and Bruns, T.D. 1993. ITS primers with enhanced specificity for basidiomycetes ? application to the identification of mycorrhizae and rusts. Molecular Ecology. 2(2), 113-118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x

Gómez-Vidal S., Lopez-Llorca L.V., Jansson H.B. and Salinas, J. 2006. Endophytic colonization of date palm (Phoenix dactylifera L.) leaves by entomopathogenic fungi. Micron. 37(7), 624-632. https://doi.org/10.1016/j.micron.2006.02.003

Güerri-Agulló B., Gómez-Vidal S., Asensio L., Barranco P. and Lopez-Llorca L.V. 2010. Infection of the Red Palm Weevil (Rhynchophorus ferrugineus) by the entomopathogenic fungus Beauveria bassiana: A SEM study. Microscopy Research and Technique. 73(7), 714-725. https://doi.org/10.1002/jemt.20812

Hajek A.E., Elkinton J.S. and Witcosky J.J. 1996. Introduction and spread of the fungal pathogen Entomophaga maimaiga (Zygomycetes: Entomophthorales) along the leading edge of gypsy moth (Lepidoptera: Lymantriidae) spread. Environmental Entomology. 25(5), 1235-1247. https://doi.org/10.1093/ee/25.5.1235

Inglis G.D., Enkerli, J. and Goettel M.S. 2012. Laboratory techniques used for entomopathogenic fungi: Hypocreales. Manual of Techniques in Invertebrate Pathology 189-253. https://doi.org/10.1016/B978-0-12-386899-2.00007-5

Jaber L.R. and Ownley B.H. 2018. Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biological Control 116, 36-45. https://doi.org/10.1016/j.biocontrol.2017.01.018

Jamunarani G.S., Ramanagouda S.H., Venkateshalu B., Jayappa J., Raghavendra G., Rudresh D.L., Kulkarni M.S., Mahantesha B.N.N. and Gopali J.B. 2022. Isolation and evaluation of indigenous endophytic entomopathogenic fungus, Beauveria bassiana UHSB-END1 (Hypocreales: Cordycipitaceae), against Spodoptera litura Fabricius. Egyptian Journal of Biological Pest Control 32(1). https://doi.org/10.1186/s41938-022-00617-4

Karaborklu S., Altin N., Karabörklü S. and Keskin Y. 2019. Native Entomopathogenic Fungi Isolated from Duzce, Turkey and their Virulence on the Mealworm Beetle [Tenebrio molitor L. (Coleoptera: Tenebrionidae)] Native Entomopathogenic Fungi Isolated from Duzce, Turkey and their Virulence on the Mealworm Beetle Tenebrio molitor L. (Coleoptera: Tenebrionidae). Philippine Agricultural Scientist 102, 82-89. https://www.researchgate.net/publication/333447762

Kim J.C., Lee M.R., Kim S., Lee S.J., Park S.E., Baek S., Gasmi L., Shin T.Y. and Kim J.S. 2019 Long-term storage stability of Beauveria bassiana ERL836 granules as fungal biopesticide. Journal of Asia-Pacific Entomology 22(2), 537-542. https://doi.org/10.1016/j.aspen.2019.04.001

Kim J.C., Lee M.R., Kim S., Lee S.J., Park S.E., Nai Y.S., Lee G.S., Shin T.Y. and Kim J.S. 2018. Tenebrio molitor-mediated entomopathogenic fungal library construction for pest management. Journal of Asia-Pacific Entomology 21(1), 196-204. https://doi.org/10.1016/j.aspen.2017.11.018

Lacey L.A. (2017) Microbial control of insect and mite pests: from theory to practice (Lawrence A. Lacey, Ed.) Elsevier.

Lacey L.A., Grzywacz D., Shapiro-Ilan D.I., Frutos R., Brownbridge M. and Goettel M.S. 2015. Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology 132, 1-41. https://doi.org/10.1016/j.jip.2015.07.009

Lacey L.A. and Kaya H.K. (2007) Field Manual of Techniques in Invertebrate Pathology. Springer. https://link.springer.com/content/pdf/10.1007/978-1-4020-5933-9.pdf

Lerche S., Meyer U., Sermann H. and Buettner C. 2004. Dissemination of the entomopathogenic fungus verticillium lecanii (Zimmermann) Viégas (Hyphomycetales: Moniliaceae) in a population of Frankliniella occidentalis (Pergande, 1895) (Thysanoptera: Thripidae). Communications in Agricultural and Applied Biological Sciences 69(3), 195-200.

Lovett B. and St. Leger, R.J. 2018. Genetically engineering better fungal biopesticides. Pest Management Science 74(4),781-789 https://doi.org/10.1002/ps.4734

Maistrou S., Paris V., Jensen A.B., Rolff J., Meyling N.V. and Zanchi C. 2018. A constitutively expressed antifungal peptide protects Tenebrio molitor during a natural infection by the entomopathogenic fungus Beauveria bassiana. Developmental and Comparative Immunology 86, 26-33. https://doi.org/10.1016/j.dci.2018.04.015

Mann A.J. and Davis T.S. 2021, Entomopathogenic fungi to control bark beetles: a review of ecological recommendations. Pest Management Science 77(9), 3841-3846. https://doi.org/10.1002/ps.6364

Nicoletti R. and Becchimanzi A. 2020. Endophytism of lecanicillium and akanthomyces. Agriculture (Switzerland) 10(6) MDPI AG. https://doi.org/10.3390/agriculture10060205

Picciotti U., Araujo Dalbon V., Ciancio A., Colagiero M., Cozzi G., De Bellis L., Finetti-Sialer M.M., Greco D., Ippolito A., Lahbib N., Logrieco A.F., López-Llorca L.V., Lopez-Moya F., Luvisi A., Mincuzzi A., Molina-Acevedo J.P., Pazzani C., Scortichini M., Scrascia M. and Porcelli, F. 2023. "Ectomosphere": Insects and Microorganism Interactions. Microorganisms 11(2) https://doi.org/10.3390/microorganisms11020440

R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Reay S.D., Brownbridge M., Gicquel B., Cummings N.J. and Nelson T.L. 2010. Isolation and characterization of endophytic Beauveria spp. (Ascomycota: Hypocreales) from Pinus radiata in New Zealand forests. Biological Control 54(1), 52-60. https://doi.org/10.1016/j.biocontrol.2010.03.002

Shin T.Y., Lee M.R., Kim J.C., Nai Y.S. and Kim J.S. 2022. A new strategy using entomopathogenic fungi for the control of tree borer insects. Entomological Research 52(7), 327-333. https://doi.org/10.1111/1748-5967.12605

Vega F.E., Meyling N.V., Luangsa-ard J.J. and Blackwell M. 2012. Fungal Entomopathogens. Insect Pathology, Second Edition 171-220. https://doi.org/10.1016/B978-0-12-384984-7.00006-3. https://doi.org/10.1016/B978-0-12-384984-7.00006-3

Vega F.E., Posada F., Catherine Aime M., Pava-Ripoll M., Infante F. and Rehner S.A. 2008. Entomopathogenic fungal endophytes. Biological Control 46(1), 72-82. https://doi.org/10.1016/j.biocontrol.2008.01.008

White T. J., Bruns T., Lee S. and Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal rna genes for phylogenetics. Pcr protocols 315-322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Wraight S. P. and Carruthers R. I. 1999. Production, Delivery, and Use of Mycoinsecticides for Control of Insect Pests on Field Crops. Biopesticides 233-270. https://doi.org/10.1385/0-89603-515-8:233 https://doi.org/10.1385/0-89603-515-8:233

Descargas

Publicado

2025-03-14

Cómo citar

Benito Delgado, A., Diez Hermano, S., & Diez Casero, J. J. (2025). Desarrollo de un modelo experimental para el aislamiento y selección de hongos endófitos con actividad entomopatógena en el bosque mediterráneo para el control de plagas. Cuadernos De La Sociedad Española De Ciencias Forestales, 51(1), 139-150. https://doi.org/10.31167/csef.v0i51.20171

Número

Sección

V Reunión Grupo de Trabajo de Sanidad Forestal (Albacete, 19-21 junio de 2024)