Spatiotemporal monitoring of pine processionary moth defoliation employing field databases, remote sensing, and dendrochronology

Autores/as

  • Cristina Gómez Almaraz iuFOR, EiFAB, Universidad de Valladolid https://orcid.org/0000-0002-2756-0863
  • Darío Domingo Ruiz
  • Hermine Houdas
  • Gabriel Sangüesa Barreda
  • Lorena Caiza Morales
  • Héctor Hernández Alonso
  • Francisco Mauro
  • Jorge Ortiz Ayuso
  • Francisco Rodríguez Puerta
  • José Miguel Olano Mendoza

DOI:

https://doi.org/10.31167/csef.v0i51.20163

Resumen

The pine processionary moth (Thaumetopoea pityocampa) is a lepidopter species of significant social and forestry interest, with its distribution potentially expanding in recent decades. However, the climatic and ecological drivers behind its expansion remain unclear. Cambium Group undertakes research to investigate the causes and patterns of pine processionary moth distribution by integrating field data, remote sensing, and dendrochronology. Our aim is to assess forest vulnerability, enhance monitoring of pine processionary moth populations, and develop early detection tools. The population dynamics of the species are closely linked to climatic conditions. Mild winters favour larval development and population growth, while heatwaves negatively affect the eggs viability and the survival of early-stage larvae. Forest structure also plays a role in susceptibility, with homogeneous stands experiencing more severe defoliation. Analyzing long-term population records from forest regional administrations provides a comprehensive view of outbreak patterns. Detailed spatiotemporal monitoring, using remote sensing time series, helps to identify vegetation phenological anomalies associated with defoliation. These canopy changes, which result in reduced leaf area index, can be detected using high-density LiDAR point clouds. To contextualize current trends and predict future impacts, a long-term perspective on pine processionary moth incidence is essential. Dendrochronological analysis, examining features such as tree ring width, early- to latewood ratio, and water-use efficiency, enables the reconstruction of moth-related disturbances over a tree´s lifespan. This multidisciplinary approach deepens our understanding of the pine processionary moth´s impact on Spanish forests and is key for improving forest damage prevention systems.

 

Citas

Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K., Butterfield, J., Buse, A., Coulson, J.C., Farrar, J., Good, J.E.G., Harrington, R., Hartley, S., Jones, T.H., Lindroth, R.L., Press, M.C., Symrnioudis, I., Watt, A.D. and Whittaker, J.B. (2002), Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Chang. Biol. 8, 1-16. https://doi.org/10.1046/j.1365-2486.2002.00451.x

Battisti, A. 1988. Host-plant relationships and population dynamics of the pine processionary caterpillar Thaumetopoea pityocampa (Denis & Schiffermu ller). J. Appl. Entomol. 105, 393-402. https://doi.org/10.1111/j.1439-0418.1988.tb00202.x

Battisti, A., Avci, M., Avtzis, D.N., Ben Jamaa, M.L., Berardi, L. et al. 2015. Natural history of the Processionary moths (Thaumetopoea spp.): new insights in relation to climate change. In: Roques, A. (editor), Processionary moths and climate change: an update. Springer, pp. 15-80. https://doi.org/10.1007/978-94-017-9340-7_2

Bernays, E.A. 1992. Interaction of insects and plants. Sci. Prog. 76, 247-271

Brooks, E.B., Yang, Z., Thomas, V.A., Wynne, R.H. 2017. EDyN: Dynamic Signaling of Changes to Forests Using Exponentially Weighted Moving Average Charts. Forests 8(9), 304. https://doi.org/10.3390/f8090304

Camarero, J.J., Tardif, J., Gazol, A., Conciatori, F. 2022. Pine processionary moth outbreaks cause longer growth legacies than drought and are linked to the North Atlantic Oscillation. Sci. Total Environ. 819, 153041. https://doi.org/10.1016/j.scitotenv.2022.153041

Démolin, G. 1969. Bioecología de la "procesionaria del pino" Thaumetopoea pityocampa Schiff. Incidencia de los factores climáticos. Bol. Serv. Plagas For. 23, 9-24

Domingo, D., Vicente-Serrano, S.M., Gómez, C., Sangüesa-Barreda, G. 2024a. Summer heat waves could counterbalance the increasing incidence of pine processionary due to warmer winters in Mediterranean pine forests. For. Ecol. Manage. 555, 121695. https://doi.org/10.1016/j.foreco.2024.121695

Domingo, D., Gómez, C., Mauro, F., Houdas, H., Sangüesa-Barreda, G., Rodríguez-Puerta, F. 2024b. Canopy structural changes in Black pine trees affected by pine processionary moth using drone-derived data. Drones-Basel 8. https://doi.org/10.3390/drones8030075

Gazol, A., Hernández-Alonso, R., Camarero, J.J. 2019. Patterns and drivers of pine processionary moth defoliation in Mediterranean mountain forests. Front. Ecol. Evol. 7, 458. https://doi.org/10.3389/fevo.2019.00458

Geri, C., Millier, C. 1985. Evaluation of the populations of the pine processionary caterpillar (Thaumetopoea pityocampa) in Mont Ventoux, France. Ann. Sci. Forest. 42, 143-183. https://doi.org/10.1051/forest:19850202

Hódar, J. A., Zamora, R. 2004. Herbivory and climatic warming, a Mediterranean outbreaking caterpillar attacks a relict, boreal pine species. Biodivers. Conserv. 13, 493-500. https://doi.org/10.1023/B:BIOC.0000009495.95589.a7

Hódar, J. A., Cayuela, L., Zamora, R. 2012. Climate change and the incidence of a forest pest in Mediterranean ecosystems, can the North Atlantic Oscillation be used as a predictor? Clim Change 113, 699-711. https://doi.org/10.1007/s10584-011-0371-7

Houdas, H., Olano, J.M., Hernández-Alonso, H., Gómez, C., García-Hidalgo, M., Domingo, D., Delgado-Huertas, A., Sangüesa-Barreda, G. 2024. Pine processionary moth outbreaks and droughts have different tree ring signatures in Mediterranean pines. Dendrochronologia 85, 126197. https://doi.org/10.1016/j.dendro.2024.126197

Jacquet J-S., Bosc, A., O'Grady, A.P., Jactel, H. 2013. Pine growth response to processionary moth defoliation across a 40-year chronosequence. For. Ecol. Manage. 293, 29-38. https://doi.org/10.1016/j.foreco.2012.12.003

Jahnke, M. (1999). Forestry Strategy. Environ. Pol. Law 29(1), 48-49. https://doi.org/10.3233/EPL-1999-29_1_12

Masutti, L., Battisti, A., 1990. Thaumetopoea pityocampa (Den. and Schiff.) in Italy. Bionomics and perspectives of integrated control. J. Appl. Entomol. 110, 229-234. https://doi.org/10.1111/j.1439-0418.1990.tb00117.x

Moneo,I., Battisti, A., Dufour, B., García-Ortiz, J.C., González-Muñoz, M., Moutou, F., Paolucci, P., Petrucco Toffolo, E., Rivière, J., Rodríguez-Mahillo, A.I., Roques, A., Roques, L., Vega, J.M., Vega, J. 2015. Medical and veterinary impact of the urticating processionary larvae. In: Roques, A. (editor), Processionary moths and climate change: an update. Springer, pp. 359-410. https://doi.org/10.1007/978-94-017-9340-7_8

Montoya, R., Hernández, R. 1998 La procesionaria del pino. In: Plagas de Insectos en las Masas Forestales Españolas. Ministerio de Agricultura, Pesca y Alimentación, Madrid, pp. 67-84.

Montoya-Moreno, R., Hernández-Alonso, R., Pérez Fortea, V. & Martín Bernal, E., (2020). Procesionaria del Pino, Gobierno de Aragón: Servicio de Estudios, Coordinación y Defensa Contra Incendios Forestales.

Montero G (1999) Breve descripción del proceso repoblador en España (1940-1995). CIFOR-INIA, Madrid

Myers, J.H., Cory, J.S. 2013. Population cycles in forest Lepidoptera revisited. Ann. Rev. Ecol. Evol. Syst. 44, 565-592. https://doi.org/10.1146/annurev-ecolsys-110512-135858

Régolini, M., Castagneyrol, B., Dulaurent-Mercadal, A.M., Piou, D., Samalens, J.C., Jactel, H. 2014. Effect of host tree density and apparency on the probability of attack by the pine processionary moth. For. Ecol. Manage. 334, 185-192. https://doi.org/10.1016/j.foreco.2014.08.038

Romanyk. N. & Cadahia, D. Coord. VARIOS AUTORES 1981. Plagas de insectos en las masas forestales españolas. Ministerio de Agricultura, Pesca y Alimentación. Madrid.

Ros-Candeira, A., Pérez-Luque, A.J., Suárez-Muñoz, M., Bonet-García, F.J., Hódar, J.A., Giménez de Azcárate, F., Ortega-Díaz, E. 2019. Dataset of occurrence and incidence of pine processionary moth in Andalusia, south Spain. Zookeys 852, 125-136. https://doi.org/10.3897/zookeys.852.28567

Sangüesa-Barreda, G., Camarero, J.J., García-Martín, A., Hernández, R., de la Riva, J. 2014. Remote-sensing and tree-ring based characterization of forest defoliation and growth loss due to the Mediterranean pine processionary moth. For. Ecol. Manage. 320, 171-181. https://doi.org/10.1016/j.foreco.2014.03.008

Verma, R.Ch., Waseem, M.A., Sharma, N., Bharathi, K., Singh, S., Rashwin, A., Pandey, Sh.K., Singh, B.V. 2023 The role of insects in ecosystems, an in-depth review of entomological research. Int. J Environ Clim Change 13(10), 4040-4048. https://doi.org/10.9734/ijecc/2023/v13i103110

Zhao, K., Wulder, M.A., Hu, T., Bright, R., Wu, Q., Qin, H., Li, Y., Toman, E., Mallick, B., Zhang, X., Brown, M. 2019. Detecting change-point, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble algorithm. Remote Sens. Environ. 232, 111181. https://doi.org/10.1016/j.rse.2019.04.034

Descargas

Publicado

2025-03-14

Cómo citar

Gómez, C., Domingo Ruiz, D., Houdas, H., Sangüesa Barreda, G., Caiza Morales, L., Hernández Alonso, H., Mauro, F. ., Ortiz Ayuso, J., Rodríguez Puerta, F., & Olano Mendoza, J. M. (2025). Spatiotemporal monitoring of pine processionary moth defoliation employing field databases, remote sensing, and dendrochronology. Cuadernos De La Sociedad Española De Ciencias Forestales, 51(1), 187-198. https://doi.org/10.31167/csef.v0i51.20163

Número

Sección

V Reunión Grupo de Trabajo de Sanidad Forestal (Albacete, 19-21 junio de 2024)