Using remote sensing to determine the effects of soil burn severity on soil properties. A case study of the 2021 Sierra Bermeja fire (S. Spain)


  • Cristina Fernandez Filgueira Socia
  • Rafael Llorens Unidad de Cambio Global. Universidad de Valencia
  • Jose Antonio Sobrino Rogriguez Unidad de Cambio Global. Universidad de Valencia



Assessment of the magnitude of change in soil erodibility, which varies depending on soil burn severity, is a critical step in post-fire restoration planning. Evaluation of post fire soil burn severity currently relies on field surveys, because the relationships between spectral indices and alterations in soil properties have scarcely been explored until now. A fire severity assessment was carried out after by a forest fire in October 2021 in Sierra Bermeja (S Spain). Several soil properties (mean weight diameter of soil aggregates, soil organic carbon and soil water repellency) were analyzed in relation to different levels of soil burn severity, at two soil depths (0-1 cm and 1-2 cm). In addition, for each sample plot, different spectral indices were computed using Sentinel-2 satellite data.

The mean weight diameter of soil aggregates and soil organic carbon decreased with soil burn severity in the surface layer (0-1 cm), but not at 1-2 cm depth. Soil water repellency was not observed in the soil surface at the higher levels of soil burn severity.

Burned Area Index for Sentinel-2 (BAIS2) was the best predictor of the mean weight diameter of soil aggregates and soil organic carbon. No correlations were obtained for soil water repellency.

The study findings confirm the importance of evaluating soil burn severity for planning post-fire restoration activities and show that the most significant changes in soil properties take place in the upper soil layer (0-1 cm). Although remote sensing techniques can help in the evaluation of soil burn severity, field evaluation are still required.


Benito, E., Soto, B., Varela, M.E., Rodríguez-Alleres, M., Rodríguez-Suárez, J.A., 2009. Modificaciones inducidas por los incendios forestales en las propiedades físicas de los suelos del noroeste de España: implicaciones en la respuesta hidrológica y en la erosión hídrica. In: Cerdá, A, Mataix-Solera, J. (Eds.) Efectos de los incendios forestales sobre los suelos en España. El estado de la cuestión visto por los científicos españoles. Cátedra Divulgación de la Ciencia. Universitat de València, Valencia, pp 303-324.

Copernicus Open Access Hub. Available online:

Core Team Development, 2022. R: A language and environment for statistical computing, in R Foundation for Statistical Computing, Vienna.

Doerr, S.H., Shakesby, R.A., Walsh, R.P.D., 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Sci. Rev., 51,33-65.

Fernández, C., Fontúrbel, T., Vega, J.A., 2019. Wildfire burned soil organic horizon contribution to runoff and infiltration in a Pinus pinaster forest soil. J. For. Res., 24, 86-92.

Fernández, C., Vega, J.A., 2016. Modelling the effect of soil burn severity on soil erosion at hillslope scale in the first year following wildfire in NW Spain. Earth Surf. Process. Landf., 41,928-935.

Fernández, C., Vega, J.A., Fontúrbel, T., 2016. Reducing post-fire soil erosion from the air: Performance of heli-mulching in a mountainous area on the coast of NW Spain. Catena, 147,489-495.

Fernández, C., Vega, J.A., Fontúrbel, T., 2020. Comparison of the effectiveness of needle cast and straw helimulching for reducing soil erosion after wildfire in NW Spain. J Soils Sediments, 20, 535-541.

Fernández, C., Fernández-Alonso, J.M., Vega, J.A., Fontúrbel, T., Llorens, R., Sobrino, J.A., 2021. Exploring the use of spectral indices to assess alterations in soil properties in pine stands affected by crown fire in Spain. Fire Ecol., 17, 2.

Filipponi, F., 2018. BAIS2: Burned Area Index for Sentinel-2. In: Multidisciplinary Digital Publishing Institute Proceedings (Vol. 2, No. 7, p. 364).

Gascon, F., Bouzinac, C., Thépaut, O., Jung, M., Francesconi, B., Louis, J., Lonjou, V., Lafrance, B., Massera, S., Gaudel-Vacaresse, A., Languille, F., Alhammoud, B., Viallefont, F., Pflug, B., Bieniarz, J., Clerc, S., Pessiot, L., Trémas, T., Cadau, E., De Bonis, R., Isola, C., Martimort, P., Fernandez, V. , 2017. Copernicus Sentinel-2A Calibration and Products Validation Status. Remote Sens., 9, 584.

Kaufman, Y., Sendra, C., 1988. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. Int. J. Remote Sens., 9, 1357-1381.

Kemper, W.D., Rosenau, R.C., 1986. Aggregate stability and size distribution. In: Klute, A. (Ed.): Methods of soil analysis. Part 1. Physical and Mineralogical Methods. American Society of Agronomy, Inc. Soil Science Society of America, Inc., Madison, Wisconsin USA, pp 425-442.

Key, C.H., Benson, N.C., 2006. Landscape Assessment: Ground measure of severity, the Composite Burn Index; and Remote sensing of severity, the Normalized Burn Ratio. FIREMON: Fire Effects Monitoring and Inventory System. Odgen, UT

Llorens, R., Sobrino, J.A, Fernández, C., Fernández-Alonso, J.M., Vega, J.A., 2022. Análisis de la severidad en el suelo provocada por los incendios forestales de Galicia en 2020 mediante el uso de la Teledetección. Proc. 8º Congreso Forestal Español.

Miller, J.D., Thode, A. E., 2007. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ., 109, 66-80.

Moody, J.A., Ebel, B.A., Nyman, P., Martin, D.A., Stoof, C., McKinley, R., 2016 Relations between soil hydraulic properties and burn severity. Int. J. Wildland Fire, 25, 279-293.

Parks, S., Dillon, G., Miller, C.,2014. A new metric for quantifying burn severity: the relativized burn ratio. Remote Sens., 6, 1827-1844.

Robichaud, P.R., Wagenbrenner, J.W., Pierson, F.B., Spaeth, K.E., Ashmun, L.E., Moffet, C.A., 2016. Infiltration and interrill erosion rates after a wildfire in western Montana, USA. Catena, 142, 77-88.

Sobrino, J.A., Llorens, R., Fernández, C., Fernández-Alonso, J.M., Vega, J.A., 2019. Relationship between forest fires severity measured in situ and through remotely sensed spectral Indices. Forests, 10, 457.

Tran, B.N., Tanase, M.A., Bennett, L.T., Aponte, C., 2018. Evaluation of spectral indices for assessing fire severity in Australian temperate forests. Remote Sens., 10,1680.

Trigg, S., Flasse, S.,2001. An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah. Int. J. Remote Sens., 22, 2641-2647.

Vega, J.A., Fontúrbel, M.T., Merino, A., Fernández, C., Ferreiro, A., Jiménez, E., 2013. Testing the ability of visual indicators of soil burn severity to reflect changes in soil chemical and microbial properties in pine forests and shrubland. Plan Soil 369,73-91.

World Soil Resources Reports. World Reference Base for Soil Resources 2014, Update 2015: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015.




Cómo citar

Fernandez Filgueira, C., Llorens, R., & Sobrino Rogriguez, J. A. (2023). Using remote sensing to determine the effects of soil burn severity on soil properties. A case study of the 2021 Sierra Bermeja fire (S. Spain). Cuadernos De La Sociedad Española De Ciencias Forestales, 49(2), 223-236.



Notas Técnicas