Respuesta temporal al ambiente lumínico y la sequía inducida en el regenerado de una masa mixta en el entorno mediterráneo

  • Marta Pardos Mínguez INIA-CIFOR
  • Guillermo Madrigal INIA-CIFOR
  • Javier de Dios García INIA-CIFOR
  • Javier Gordo Servicio Territorial de Medio Ambiente de Valladolid
  • Rafael Calama INIA-CIFOR

Resumen

El trabajo se desarrolla en las masas mixtas de pino piñonero, sabina y encina de los páramos calizos de la Meseta Norte. Se estudia la supervivencia, crecimiento, respuesta fisiológica y reparto de biomasa de una plantación de las tres especies a lo largo de un gradiente lumínico y bajo condiciones de sequía inducida. Se establecieron 12 parcelas (45 m2), divididas en dos subparcelas, a su vez con 4 bloques, donde se plantaron 9 plantas (3 plantas por especie). Se fijaron 3 niveles de luz (HL: GSF~0.75: ML: GSF~0.45; LL: GSF~ 0.26); y dos niveles de disponibilidad hídrica (Co: condiciones ambientales naturales; y W-: reducción de precipitación del 30% mediante sistema de exclusión de precipitación). El ensayo duró desde diciembre 2011 hasta mayo 2015. Se evaluó la supervivencia en 19 ocasiones y se midió la fluorescencia a la clorofila 4 veces. En mayo 2015 se hizo cosecha final,  analizándose el reparto de biomasa y crecimiento. Las mayores tasas de mortalidad se registraron tras el primer verano, con  efecto negativo del tratamiento HL sobre la supervivencia de encina y pino, y poco efecto  de la exclusión. Bajo sombra, las tasas de supervivencia fueron mayores. La supervivencia estuvo íntimamente relacionada con su comportamiento fisiológico,  modificado por el ambiente lumínico y la época del año, pero no por la exclusión. Los resultados confirman la mejor capacidad adaptativa de la sabina y la encina en estas masas mixtas, aunque a largo plazo se reducirá la resiliencia de la encina, afectando a su capacidad rebrotadora.

Citas

Barbeta, A., Peñuelas, J., 2016. Sequence of plant responses to droughts of different timescales: lessons from holm oak (Quercus ilex) forests. Plant Ecology & Diversity. 9 (4), 321-338. https://doi.org/10.1080/17550874.2016.1212288

Besson, C.K., Lobo-do-Vale, R., 2014. Cork oak physiological responses to manipulated water availability in a Mediterranean woodland. Agricultural and Forest Meteorology 184, 230-242.

https://doi.org/10.1016/j.agrformet.2013.10.004

Calama, R., Puértolas, J., Manso, R., Pardos, M., 2015. Defining the optimal regeneration niche for Pinus pinea L. through physiology-based models for seedling survival and carbon assimilation. Trees - Struct. Funct. 29, 1761-1771. https://doi.org/10.1007/s00468-015-1257-5

de Dios García, J., 2019. Estudio de las masas mixtas de Pinus pinea L. en la Meseta Norte. Crecimiento y dinámica en un contexto de cambio global. Tesis doctoral, 228 p

de Dios García, J., Manso, R., Calama, R., Fortin, M., Pardos, M., 2018. A new multifactorial approach for studying intra-annual secondary growth dynamics in Mediterranean mixed-forests: integrating biotic and abiotic interactions. Can J For Res 48:1-12. https://doi.org/10.1139/cjfr-2017-0139

Gómez-Aparacio, L., Valladares, F., Zamora, R., 2006. Differential light responses of Mediterranean tree saplings: linking ecophysiology with regeneration niche in four co-occurring species. Tree Physiology 26: 947-958. https://doi.org/10.1093/treephys/26.7.947

Gimeno, T.E., Camarero, J.J., Granda, E., Pías, B., Valladares, F., 2012. Enhanced growth of Juniperus thurifera under a warmer climate is explained by a positive carbon gain under cold and drought. Tree Physiol. 32, 326-336. https://doi.org/10.1093/treephys/tps011

Granda, E., Escudero, A., Valladares, F., 2014. More than just drought: complexity of recruitment patterns in Mediterranean forests. Oecologia 176, 997-1007. https://doi.org/10.1007/s00442-014-3064-x

Grossnickle, S.C., 2012. Why seedlings survive: influence of plant attributes. New Forests 43, 711-738. https://doi.org/10.1007/s11056-012-9336-6

Guàrdia, M., Fernández, J., Elena, G., Fleck, I., 2012. Stomatal patchiness in the Mediterranean holm oak (Quercus ilex L.) under water stress in the nursery and in the forest. Tree Physiology 32, 829-838. https://doi.org/10.1093/treephys/tps035

Jiménez, M.D., Pardos, M., Puértolas, J., Kleczkowski, L.A., Pardos, J.A., 2009. Deep shade alters the acclimation response to moderate water stress in Quercus suber L. Forestry 82(3), 285-298. https://doi.org/10.1093/forestry/cpp008

Kerr. K.L., Meinzer, F.C., McCulloh, K.A., Woodruff, D.R., Marias, D.E., (2015. Expression of functional traits during seedling establishment in two populations of Pinus ponderosa from contrasting climates. Tree Physiol 35: 535-548. https://doi.org/10.1093/treephys/tpv034

Kramer, D.M., Johnson, G., Kiirats, O., Edwards, G.E., 2004. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Res 79(2): 209-218. https://doi.org/10.1023/B:PRES.0000015391.99477.0d

Ledo, A., Cañellas, I., Barbeito, I., Gordo, F.J., Calama, R., Gea-Izquierdo, G., 2014. Species coexistence in a mixed Mediterranean pine forest: Spatio-temporal variability in trade-offs between facilitation and competition. For. Ecol. Manage. 322, 89-97. https://doi.org/10.1016/j.foreco.2014.02.038

Leuzinger, S., Luo, Y., Beier, C., Dieleman, W., Vicca, S., Körner, C., 2011. Do global change experiments overestimate impacts on terrestrial ecosystems? Trends Ecol Evol 26(5): 236-241. https://doi.org/10.1016/j.tree.2011.02.011

Limousin, J.C., Longepierre, D., Huc, R., Rambal, S., 2010. Change in hydraulic traits of Mediterranean Quercus ilex subjected to long-term throughfall exclusion. Tree Physiol 30, 1026-1036. https://doi.org/10.1093/treephys/tpq062

Limousin, J.C., Rambal, S., Ourcival, J.M., Joffre, R., 2008. Modelling rainfall interception in a mediterranean Quercus ilex ecosystem: Lesson from a throughfall exclusion experiment. Journal of Hydrology 357(1-2), 57-66. https://doi.org/10.1016/j.jhydrol.2008.05.001

MacKay, S.L., Arain, M.A., Khomik, M. et al., 2012. The impact of induced drought on transpiration and growth in a temperate pine plantation forest. Hydrolog. Procc. 26, 1779-1791. https://doi.org/10.1002/hyp.9315

Manso, R., ,Pukkala, R., Pardos, M., Miina, J., Calama, R., 2014. Modelling Pinus pinea forest management to attain natural regeneration under present and future climatic scenarios. Can J For Res 44:250-262. https://doi.org/10.1139/cjfr-2013-0179

Martin‐StPaul, N.K. , Limousin, J.M. , Vogt‐Schilb, et al., 2013. The temporal response to drought in a Mediterranean evergreen tree: comparing a regional precipitation gradient and a throughfall exclusion experiment. Global Ch Biol 19, 2413-2426. https://doi.org/10.1111/gcb.12215

Mayoral, C., Calama, R., Sánchez-González, M., Pardos. M., 2015. Modelling the influence of light, water and temperature on photosynthesis in young trees of mixed Mediterranean forests. New Forests 46, 485-506. https://doi.org/10.1007/s11056-015-9471-y

Mayoral, M., Pardos, M., Sánchez-González, M., Brendel, O., Pita, P., 2016. Ecological implications of different water use strategies in three coexisting mediterranean tree species. For Ecol Manag 382, 76-87. https://doi.org/10.1016/j.foreco.2016.10.002

Moreira, F., Catry, F., Lopes, T., Bulgalho, M.N., Rego, F., 2009. Comparing survival and size of resprouts and planted trees for post-fire forest restoration in central Portugal. Ecological Engineering 35, 870-873. https://doi.org/10.1016/j.ecoleng.2008.12.017

Navarro, R.M., Del Campo, A., Cortina, J., 2006. Factores que afectan al éxito de una repoblación y su relación con la calidad de planta. En: "Calidad de planta forestal para la restauración en ambientes Mediterráneos" (Cortina J, Peñuelas JL, Puértolas J, Savé R, Vilagrosa A eds). M Medio Ambiente, Madrid, Spain, pp. 31-46.

Ogaya, R., Peñuelas, J., 2007. Tree growth, mortality, and above-ground biomass accumulation in a holm oak forest under a five-year experimental field drought. Plant Ecology 189, 291-299. https://doi.org/10.1007/s11258-006-9184-6

Ogaya, R., Peñuelas, J., Asensio, D., Llusià, J., 2011. Chlorophyll fluorescence responses to temperature and water availability in two co-dominant Mediterranean shrub and tree species in a long-term field experiment simulating climate change. Environmental and Experimental Botany 71 (2), 123-127. https://doi.org/10.1016/j.envexpbot.2010.10.016

Pardos, M., Puértolas, J., Madrigal, G., Garriga, E., de Blas, S., Calama, R, 2011. Seasonal changes in the physiological activity of regeneration under a natural light gradient in a Pinus pinea regular stand. For Syst 19(3). https://doi.org/10.5424/fs/2010193-9102

Pardos, M., Calama, R., Mayoral, C., Madrigal, G., Sánchez-González, M. 2014. Addressing post-transplant summer water stress in Pinus pinea and Quercus ilex seedlings. iForests. https://doi.org/10.3832/ifor1256-007

Pardos, M., Calama, R., 2017. Responses of Pinus pinea seedlings to moderate drought and shade: is the provenance a differential factor? Photosynthetica 55: 1-13. https://doi.org/10.1007/s11099-017-0732-1

Pardos. M., Calama, R., Mayoral, M., Madrigal, G., Sánchez-González, M., 2014. Addressing post-transplant summer water stress in Pinus pinea and Quercus ilex seedlings. iForest - Biogeosciences and Forestry 8, 348-358. https://doi.org/10.3832/ifor1256-007

Poorter, H., Niklas, K.J., Reich. P,B,, Oleksyn, J., Poot, P., Mommer, L.,2012. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193: 30-50. https://doi.org/10.1111/j.1469-8137.2011.03952.x

Quero, J.L., Villar, R., Marañón, T., Zamora, R., 2006. Interactions of drought and shade effects on four Mediterranena Quercus species: physiological and structural leaf responses. New Phytol 170: 819-834. https://doi.org/10.1111/j.1469-8137.2006.01713.x

Rustad, L.E., 2008. The response of terrestrial ecosystems to global climate change: towards an integrated approach. Sci Total Environ 404: 222-235. https://doi.org/10.1016/j.scitotenv.2008.04.050

Sack, L. , Grubb , P.J.and Marañón , T., 2003 The functional morphology of juvenile plants tolerant of strong summer drought in shaded forest understories in southern Spain . Plant Ecol. 168, 139 – 163. https://doi.org/10.1023/A:1024423820136

Saunier, A., Ormeño, E. , Havaux, M. et al., 2018. Resistance of native oak to recurrent drought conditions simulating predicted climatic changes in the Mediterranean region. Plant, Cell Environ. 41, 2299-2312. https://doi.org/10.1111/pce.13331

Schupp, E.W., 1995. Seed-seedling conflicts, habitat choice, and patterns of plant recruitment. American Journal of Botany 82, 399-409. https://doi.org/10.1002/j.1537-2197.1995.tb12645.x

Sperlich, D., Chang, C.T. et al., (2015) Seasonal variability of foliar photosynthetic and morphological traits and drought impacts in a Mediterranean mixed forest. Tree Physiol 35: 501-520. https://doi.org/10.1093/treephys/tpv017

Smith, M.D., Knapp, A.K., Collins, S.L., 2009. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by climate change. Ecology 90: 3279-3289. https://doi.org/10.1890/08-1815.1

Vallejo, V.R., Smanis, A., Chirino, E., Fuentes, D., Valdecantos, A., Vilagrosa, A., 2012. Perspectives in dryland restoration: approaches for climate change adaptation. New Forests 43, 561-579. https://doi.org/10.1007/s11056-012-9325-9

Villar-Salvador, P., Puértolas, J., Cuesta, B., Peñuelas, J.L., Uscola, M., Heredia-Guerrero, N., Rey Benayas, J.M., 2012. Increase in size and nitrogen concentration enhances seedling survival in Mediterranean plantations. Insights from an ecophysiological conceptual model of plant survival. New Forests 43 (5-6), 755-770. https://doi.org/10.1007/s11056-012-9328-6

Villar-Salvador P., Peñuelas, J.L., Jacobs, D.F., 2013. Nitrogen nutrition and drought hardening exert opposite effects on the stress tolerance of Pinus pinea L. seedlings. Tree Physiology 33 (2), 221- 232. https://doi.org/10.1093/treephys/tps133

Valladares, F.I., Dobarro, I., Sánchez-Gómez, D., Pearcy, R.W., 2005. Photoinhibition and drought in Mediterranean woody samplings: scaling effects and interactions in sun and shade phenotypes. Journal of Experimental Botany 56, 483- 494. https://doi.org/10.1093/jxb/eri037

Publicado
2020-02-03
Cómo citar
Pardos MínguezM., MadrigalG., de Dios-GarcíaJ., GordoJ., & CalamaR. (2020). Respuesta temporal al ambiente lumínico y la sequía inducida en el regenerado de una masa mixta en el entorno mediterráneo. Cuadernos De La Sociedad Española De Ciencias Forestales, 45(3), 1-18. https://doi.org/10.31167/csecfv0i45.19876
Sección
Sección especial: Ecología, Ecofisiología y Suelos Forestales