El rol del nitrógeno orgánico en el desarrollo de mecanismos de resistencia a estrés en especies del género Pinus.

  • José Ángel Sigala Rodríguez Universidad Politécnica de Madrid
  • Mercedes Uscola Fernández Universidad de Alcalá
  • Juan Antonio Oliet Palá Universidad Politécnica de Madrid

Resumen

Las plantas pueden usar múltiples fuentes de nitrógeno (N), tanto inorgánicas como orgánicas (aminoácidos intactos o proteínas). El bajo coste metabólico del N orgánico podría redundar en un mayor crecimiento o en aumento de tolerancia a factores de estrés, lo que favorecería el éxito de las plantaciones. Sin embargo, su uso de N orgánico en fertilización apenas se ha estudiado y menos el rol que juega en promover resistencia a factores de estrés abiótico en las plantas. Se estudió el efecto de la fertilización con aminoácidos, como fuente de N, sobre el crecimiento y resistencia a estrés por sequía o frío en plantas del género Pinus, ya que son las especies más frecuentemente utilizadas en proyectos de restauración. Los resultados mostraron que el N orgánico fue tan eficiente como las fuentes inorgánicas promoviendo el crecimiento y estado nutricional de las plantas. Si bien a priori, en ausencia de aclimatación, el N orgánico no indicó grandes ventajas en tolerancia a sequía, tras un periodo de aclimatación, en plantas fertilizadas con N orgánico se optimizó la concentración de prolina y pigmentos fotosintéticos. Además, aunque el endurecimiento a frio fue un poco más tardío en las plantas fertilizadas con N orgánico, presentaron mayor y más prolongada tolerancia a heladas en el invierno. Los resultados indican que el N orgánico puede ser usado como una alternativa viable en programas fertilización de los viveros forestales, optimizando las características de resistencia en las plantas sin afectar su calidad morfológica.

Citas

Ábrahám, E., Hourton-Cabassa, C., Erdei, L., Szabados, L., 2010. Methods for determination of proline in plants. In: Sunkar, R. (ed) Plant Stress Tolerance: Methods and Protocols. Humana Press, Totowa, NJ, pp 317-331. https://doi.org/10.1007/978-1-60761-702-0_20

Barnes, J.D., Balaguer, L., Manrique, E., Elvira, S., Davison, A.W., 1992. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ Exp Bot 32:85-100. https://doi.org/10.1016/0098-8472(92)90034-Y

Britto, D.T., Kronzucker, H.J., 2002. NH4+ toxicity in higher plants: a critical review. J Plant Physiol 159:567-584. https://doi.org/10.1078/0176-1617-0774

Britto, D.T., Siddiqi, M.Y., Glass, A.D., Kronzucker, H.J., 2001. Futile transmembrane NH4+ cycling: a cellular hypothesis to explain ammonium toxicity in plants. Proc Natl Acad Sci U S A 98:4255-8. https://doi.org/10.1073/pnas.061034698

Delgado-Baquerizo, M., Covelo, F., Gallardo, A., 2011. Dissolved organic nitrogen in Mediterranean ecosystems. Pedosphere 21:309-318. https://doi.org/10.1016/S1002-0160(11)60131-8

Dumroese, R.K., Williams, M.I., Stanturf, J.A., Clair ,J.B. St., 2015. Considerations for restoring temperate forests of tomorrow: forest restoration, assisted migration, and bioengineering. New For 46:947-964. https://doi.org/10.1007/s11056-015-9504-6

Earnshaw, M.J., 1993. Stress indicators: electrolyte leakage. In: Hendry GAF, Grime JP (eds) Methods in comparative plant ecology. A laboratory manual, 1st. Chapman and Hall, London, pp 152-154

Fernández-Pérez, L., Villar-Salvador, P., Martínez-Vilalta, J., Toca, A., Zavala, M.A., 2018. Distribution of pines in the Iberian Peninsula agrees with species differences in foliage frost tolerance, not with vulnerability to freezing-induced xylem embolism. Tree Physiol 38:507-516. https://doi.org/10.1093/treephys/tpx171

Franklin, O., Cambui, C.A., Gruffman, L., Palmroth, S., Oren, R., Näsholm, T., 2017. The carbon bonus of organic nitrogen enhances nitrogen use efficiency of plants. Plant Cell Environ 40:25-35. https://doi.org/10.1111/pce.12772

Greer, D.H., Robinson, L.A., Hall, A.J., Klages, K., Donnison, H., 2000. Frost hardening of Pinus radiata seedlings: effects of temperature on relative growth rate, carbon balance and carbohydrate concentration. Tree Physiol 20:107-114. https://doi.org/10.1093/treephys/20.2.107

Grossnickle, C.S., MacDonald, E.J., 2018. Seedling Quality: History, Application, and Plant Attributes. Forests 9:283. https://doi.org/10.3390/f9050283

Gruffman, L., Ishida, T., Nordin, A., Näsholm, T., 2012. Cultivation of Norway spruce and Scots pine on organic nitrogen improves seedling morphology and field performance. For Ecol Manage 276:118-124. https://doi.org/10.1016/j.foreco.2012.03.030

Gruffman, L., Jämtgård, S., Näsholm, T., 2014. Plant nitrogen status and co-occurrence of organic and inorganic nitrogen sources influence root uptake by Scots pine seedlings. Tree Physiol 34:205-213. https://doi.org/10.1093/treephys/tpt121

Gruffman, L., Palmroth, S., Näsholm, T., 2013. Organic nitrogen uptake of Scots pine seedlings is independent of current carbohydrate supply. Tree Physiol 33:590-600. https://doi.org/10.1093/treephys/tpt041

Heuer, B., 2010. Role of Proline in plant response to drought and salinity. In: Handbook of Plant and Crop Stress,Third Edition. CRC Press, pp 213-238. https://doi.org/10.1201/b10329-12

Kielland, K., 1994. Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology 75:2373-2383. https://doi.org/10.2307/1940891

Koide, R.T., Robichaux, R.H., Morse, S.R., Smith, C.M., 1989. Plant water status, hydraulic resistance and capacitance. In: Pearcy RW, Ehleringer JR, Mooney HA, Rundel PW (eds) Plant Physological Ecology: Field Methods and Instrumentation, 1st. Chapman and Hall, London, pp 161-183. https://doi.org/10.1007/978-94-009-2221-1_9

Kronzucker, H.J., Siddiqi, M.Y., Glass, A.D.M., 1997. Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature 385:59. https://doi.org/10.1038/385059a0

Lipson D., Näsholm T., 2001. The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128:305-316. https://doi.org/10.1007/s004420100693

Marschner, H., Häussling, M., George, E., 1991. Ammonium and nitrate uptake rates and rhizosphere pH in non-mycorrhizal roots of Norway spruce [Picea abies (L.) Karst.]. Trees 5:14-21. https://doi.org/10.1007/BF00225330

McKane, R.B., Johnson, L.C., Shaver, G.R., Nadelhoffer, K.J., Rastetter, E.B., Fry B., et al 2002. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415:68-71. https://doi.org/10.1038/415068a

Metcalfe, R.J., Nault, J., Hawkins, B.J., 2011. Adaptations to nitrogen form: comparing inorganic nitrogen and amino acid availability and uptake by four temperate forest plants. Can J For Res 41:1626-1637. https://doi.org/10.1139/x11-090

Nacry, P., Bouguyon, E., Gojon, A., 2013. Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil 370:1-29. https://doi.org/10.1007/s11104-013-1645-9

Näsholm, T., Ekblad, A., Nordin, A., Giesler, R., Högberg, M.N., Högberg, P., 1998. Boreal forest plants take up organic nitrogen. Nature 392:914-916. https://doi.org/10.1038/31921

Näsholm, T., Kielland, K., Ganeteg, U., 2009. Uptake of organic nitrogen by plants. New Phytol 182:31-48. https://doi.org/10.1111/j.1469-8137.2008.02751.x

Öhlund, J., Näsholm, T., 2001. Growth of conifer seedlings on organic and inorganic nitrogen sources. Tree Physiol 21:1319-1326. https://doi.org/10.1093/treephys/21.18.1319

Oliet, J.A., Puértolas, J., Planelles, R., Jacobs, D.F., 2013. Nutrient loading of forest tree seedlings to promote stress resistance and field performance: a Mediterranean perspective. New For 44:649-669. https://doi.org/10.1007/s11056-013-9382-8

Persson, J., Gardeström, P., Näsholm, T., 2006. Uptake, metabolism and distribution of organic and inorganic nitrogen sources by Pinus sylvestris. J Exp Bot 57:2651-2659. https://doi.org/10.1093/jxb/erl028

Schulz, H., Härtling, S., Stange, C.F., 2011. Species-specific differences in nitrogen uptake and utilization by six European tree species. J Plant Nutr Soil Sci 174:28-37. https://doi.org/10.1002/jpln.201000004

Szabados, L., Savouré, A., 2010. Proline: a multifunctional amino acid. Trends Plant Sci 15:89-97. https://doi.org/10.1016/j.tplants.2009.11.009

Taïbi K., Del Campo A.D., Vilagrosa A., Bellés J.M., López-Gresa M.P., Pla D., et al 2018 Drought tolerance in Pinus halepensis seed sources as identified by distinctive physiological and molecular markers. Front Plant Sci 8:1202. https://doi.org/10.3389/fpls.2017.01202

Toca A., Oliet J.A., Villar-Salvador P., Maroto J., Jacobs D.F. 2018 Species ecology determines the role of nitrogen nutrition in the frost tolerance of pine seedlings. Tree Physiol 38:96-108. https://doi.org/10.1093/treephys/tpx165

Uscola M., Villar-Salvador P., Oliet J.A., Warren C.R. 2014 Foliar absorption and root translocation of nitrogen from different chemical forms in seedlings of two Mediterranean trees. Environ Exp Bot 104:34-43. https://doi.org/10.1016/j.envexpbot.2014.03.004

Uscola M., Villar-Salvador P., Oliet J.A., Warren C.R. 2017 Root uptake of inorganic and organic N chemical forms in two coexisting Mediterranean forest trees. Plant Soil 1-6. https://doi.org/10.1007/s11104-017-3172-6

Villar-Salvador P., Peñuelas J.L., Jacobs D.F. 2013 Nitrogen nutrition and drought hardening exert opposite effects on the stress tolerance of Pinus pinea L. seedlings. Tree Physiol 33:221-32. https://doi.org/10.1093/treephys/tps133

Villar-Salvador P., Puértolas J., Cuesta B., Peñuelas J.L., Uscola M., Heredia-Guerrero N., Rey Benayas J.M. 2012 Increase in size and nitrogen concentration enhances seedling survival in Mediterranean plantations. Insights from an ecophysiological conceptual model of plant survival. New For 43:755-770. https://doi.org/10.1007/s11056-012-9328-6

Villar-Salvador P., Puértolas J., Peñuelas J.L., Planelles R. 2005 Effect of nitrogen fertilization in the nursery on the drought and frost resistance of Mediterranean forest species. Investig Agrar Sist y Recur For 14:408-418. https://doi.org/10.5424/srf/2005143-00935

Zerihun A., McJenzie B.A., Morton J.D. 1998 Photosynthate costs associated with the utilization of different nitrogen-forms: influence on the carbon balance of plants and shoot-root biomass partitioning. New Phytol 138:1-11. https://doi.org/10.1046/j.1469-8137.1998.00893.x

Publicado
2019-09-11
Cómo citar
Sigala Rodríguez, J. Ángel, Uscola Fernández, M., & Oliet Palá, J. A. (2019). El rol del nitrógeno orgánico en el desarrollo de mecanismos de resistencia a estrés en especies del género Pinus. Cuadernos De La Sociedad Española De Ciencias Forestales, 45(2), 71-86. https://doi.org/10.31167/csecfv0i45.19489
Sección
Sección especial: Repoblaciones Forestales